Extreme weather

A tornado is an example for an extreme weather event. This tornado struck Anadarko, Oklahoma during a tornado outbreak in 1999.

Extreme weather includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past.[1][2] Extreme events are based on a location's recorded weather history. They are defined as lying in the most unusual ten percent (10th or 90th percentile of a probability density function).[2] The main types of extreme weather include heat waves, cold waves and heavy precipitation or storm events, such as tropical cyclones. The effects of extreme weather events are economic costs, loss of human lives, droughts, floods, landslides. Severe weather is a particular type of extreme weather which poses risks to life and property.

Weather patterns can experience some variation, and so extreme weather can be attributed, at least in part, to the natural climate variability that exists on Earth. For example, the El Niño-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO) are climate phenomena that impact weather patterns worldwide.[3] Generally speaking, one event in extreme weather cannot be attributed to any one single cause. However, certain system wide changes to global weather systems can lead to increased frequency or intensity of extreme weather events.[4]

Climate change is making some extreme weather events more frequent and more intense.[5]: 1517  This applies in particular to heat waves and cold waves. The science of extreme event attribution looks at the reasons behind extreme events. Scientists are fairly sure that climate change makes heavy rainfall events as well as drought periods more severe.[6] Climate models indicate that rising temperatures will make extreme weather events worse worldwide.

Extreme weather has serious impacts on human society and on ecosystems. There is loss of human lives, damage to infrastructure and ecosystem destruction. For example, a global insurer Munich Re estimates that natural disasters cause more than $90 in billion global direct losses in 2015.[4] Some human activities can exacerbate the effects, for example poor urban planning, wetland destruction, and building homes along floodplains.

  1. ^ "Has Climate Variability, or have Climate Extremes, Changed?". Intergovernmental Panel on Climate Change. Archived from the original on 2005-11-01. Retrieved 13 April 2007.
  2. ^ a b Cite error: The named reference :8 was invoked but never defined (see the help page).
  3. ^ Cite error: The named reference :4 was invoked but never defined (see the help page).
  4. ^ a b Attribution of Extreme Weather Events in the Context of Climate Change (Report). Washington, DC: The National Academies Press. 2016. pp. 21–24. doi:10.17226/21852. ISBN 978-0-309-38094-2.
  5. ^ Seneviratne, S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I. Iskandar, J. Kossin, S. Lewis, F.  Otto, I.  Pinto, M. Satoh, S.M. Vicente-Serrano, M. Wehner, and B. Zhou, 2021: Chapter 11: Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I  to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R.  Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1513–1766, doi:10.1017/9781009157896.013.
  6. ^ Attribution of Extreme Weather Events in the Context of Climate Change (Report). Washington, DC: The National Academies Press. 2016. pp. 127–136. doi:10.17226/21852. ISBN 978-0-309-38094-2. Archived from the original on 2022-02-15. Retrieved 2020-02-22.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search